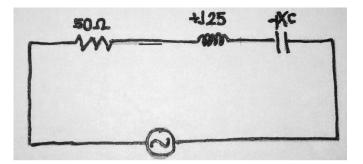
Master of Science – I (Electronic Sci.) Examination: Oct / Nov 2016 Semester – I (New CBCS)

		Day &			/	Paper			
SL	.R No.	Day & Date	Time	Subject	Name	No.	Seat No.		
SLR – SJ - 332		2 Wednesday 16/11/2016	10.30 AM to 01.00 PM	Semiconduc	tor Devices	HCT 1.1			
Instructions:1) All questions carry equal marks.2) Q.1 and Q.2 are compulsory.3) Attempt any THREE questions from Q.3 to Q.74) Use of non-programmable calculator is allowed.Total Marks: 70									
Q.1	A) Sel	ect the most corr	ect alternati	ve-			06		
2.11		Package fraction			her than the o	thers.	00		
	,	a) Simple cubic		-	Body centere				
		c) Face centered	cubic		Diamond				
	2)	several thousand	 hich type of material has impurities at the levels of several hundred to veral thousand parts per million (ppm) Metallurgical grade Si Electronic grade Si Both (a) and (b) 						
	2)	. 1	1 • . •	<u> </u>					
	3)		have a positi	ve effective ma					
		a) Holesc) Holes and ele	ctron both	/	Electrons Neutrons				
 4) What is the equilibrium hole concentration at 300 K, if Si sample is doped with As concentration of 10¹⁷ atoms/cm³? a) 10¹⁷cm⁻¹ b) 300 cm³ c) 1.5 X 10²⁰ cm⁻¹ d) 2.25 X 10³ cm³ 5) Junction between dissimilar semiconductors is					ped				
	P) Stat	c) both voltage ate whether follow		,	power		08		
	,	A unit cell allows center.	U			also at the f			
	2)	Number of electro	ons and holes	are equal in ex	trinsic semico	onductors.			
		Semiconductor m conduction and va	aterials at 0 F	-			rith		
		Zener breakdown							
	,	photodiodes.							
	,	etching process.							
		Schottky barrier c integrated circuits	5.						
	8)	Haynes-Shockley mobility.	experiment i	s used to meas	ure the minor	ity carrier			

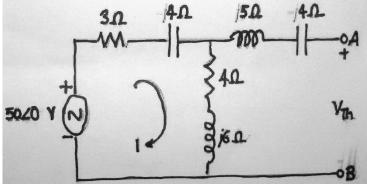
Q.2	W	rite brief notes on the following:	
	a)	Give a brief account of molecular beam epitaxy.	05
		Write a note on effective mass.	05
	c)	What are rectifying contacts?	04
Q.3	a)	1) Calculate the areal density of Si atoms (number/cm ²) on the (100) plane. Also calculate the volume density of Si atoms (number of atoms/cm ³), the lattice constant of Si is 5.43 A.	05
		2) Calculate the maximum packing fraction and the radius of the atoms treated as hard spheres (Si) with the nearest neighbors touching.	05
	b)	Write a note on Cubic lattices.	04
Q.4	a)	What are intrinsic and extrinsic materials?	10
	b)	What is the law of mass action? Describe law of mass action for p-type and n-type semiconductors.	04
Q.5	a)	What is a rectifier? Give the advantage of guard ring diffusion.	10
	b)	Distinguish between diode and varactor diode?	04
Q.6	a)	Derive an expression for current voltage characteristics of a FET.	10
	b)	Comment on the threshold voltage of an ideal MOS.	04
Q.7	a)	What is Fermi level and the Fermi Dirac distribution function? Draw and explain the Fermi-Dirac distribution function of intrinsic, n-type and p-type material.	10
	b)	Explain Hall effect in brief.	04

Master of Science – I (Electronics Science) Examination: Oct / Nov 2016 Semester – I (New CBCS)

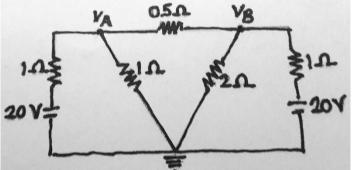
			NOV 2016 Se	mester	- (- 10 11		
SLR No.	Day & Date	Time	Subject N	Name	Paper No.	Seat No.	
SLR – SJ 333	Friday 18/11/2016	10:30 AM to 01:00 PM	to Synthesis		HCT 1.2		
Instruction	2) Ans 3) All	swer any thr questions ca	re compulsory. ee questions fro rry equal mark grammable calc	KS.			
Q.1 A)	 a) Linear c) Active 2) KVL worf a) Low o c) Both (3) Laplace tr a) 1/(s + c) a/s 4) When f < a) Capacit c) Resist 5) The nodal a) KVL a c) KCL a 6) In a 	ty theorem is circuits e network ks of the follo of conservatio a) and (b) cansform of e ⁶ a) f _r , impedance ive ive method of ci and Ohm's la and KVL circuit, a n an impedance nin's n's	valid only for owing the princi- on of charge ^{at} is e in a series reso ircuit analysis is w ny linear n/w ca	 b) Bilate d) All of ple of b) Low of d) None b) 1/(s - d) s/a onance circu b) Induct d) Zero based on b) KCL d) All of 	f these of conservation of the above a) uit is ive and Ohm's la f the above	aw	06
B)	equations.2) In a parall the same a	r false: cansform methed el circuit, the and equal to t	hod can be used current flowing he total current. of unit step sigr	, through al			08

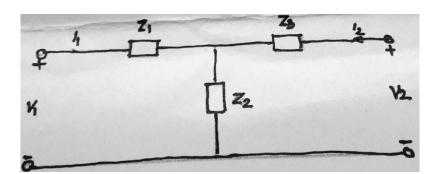

- 4) An element or number of elements connected between two nodes constitutes a branch.
- 5) The quality factor factor is defined as the ratio of the maximum energy stored to energy dissipated in one period.
- 6) The Tellegan's theorem is valid for the network which obeys Kirchoffs voltage and current laws.
- 7) Initial condition for a capacitor with voltage is open circuit.
- 8) For positive real function, the sum of two positive real functions is positive real.

Q.2 Answer the following:


Q.3

a)	Explain variation of an impedance with frequency in a parallel resonant circuit.	05
b)	Explain waveform synthesis of a network in detail.	05
c)	Describe steps to be followed in nodal analysis.	04
a)	Explain mesh analysis with a suitable example.	08
b)	Explain the following properties of a Laplace transform.	06


- 1) Linearity
- 2) Time shifting theorem
- Q.4 a) Derive an expression for bandwidth of a series RLC circuit. 10
 - b) Determine the values of X_c and impedance at resonance for the circuit below. 04


Q.5 a) Explain Thevenin's theorem. Obtain Thevenin's equivalent network for the terminals A and B below.

Calculate the current through 2Ω resistor for the network shown below. **b**)

- Q.6 Explain series and parallel combinations of capacitors and obtain voltage **08** a) division in series circuit.
 - The Whether $F(s) = s^2 + 6s + 5/s^2 + 9s + 14$ is positive real function? 06 **b**)

Explain short circuit admittance parameters. **b**)

Q.7

a)

Find the Z parameters for a network shown below.

06

08

06

Examination: Oct / Nov 2016 Semester – I (New CBCS)							
SLR No.	Day & Date	Time	Sub	ject Name	Paper No.	Seat No.	
SLR – SJ- 334	Monday 21/11/2016	10:30 AM to 01.00 PM		munication Systems	НСТ 1.3		
Instructions:1) All questions carry equal marks.2) Q.1 and Q.2 are compulsory.3) Attempt any THREE questions from Q.3 to Q.74) Use of non programmable calculator is allowed.Total Marks: 70							
1) A tr	ose correct alter FM signal with ipler. The wave f m _f	a modulation		er will have a m			
2) A ir a)) m _f /3 400 W carrier i AM is 400 W 588 W	s amplitude n 	nodulated v b)	m _f /9 with m = 0.75. T 512 W 650 W	The total powe	er	
a	on-coherently d PSK FSK	etection is no	b) .	for ASK Both a and c			
a) b) c)	 /hich of the follo Reactance bip Armstrong module Varactor diod Reactance FM 	oolar transisto odulator e modulator	-	-	ion?		
is a	C is capacity of signal to noise C = $(\delta f) \log 2$ C = $\log_2 \left[1 \right]$	ratio, then $_2 \left[1 + \frac{s}{N}\right]$	b)	δf is bandwidth $C = 2(\delta f) \log f$ $C = (\delta f) \log f$	$_{2}\left[1+\frac{s}{N}\right]$	N	
6) If	transmission ba	undwidth is do	oubled in F	M, Signal to No	oise Ratio is		
a) c)	Doubled Decreased for	ır times	· · · · ·	Raised four time Halved	es		
7) Q a) c)		occurs in	,	FDM PWM			

Master of Science – I (Electronic Science) Examination: Oct / Nov 2016 Semester – I (New CBCS)

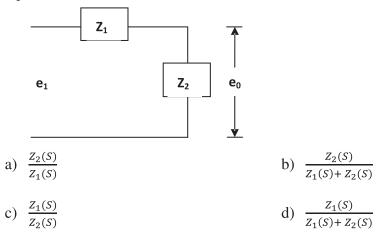
Page **1** of **2**

	 8) In a two tone AM system the two modulating frequencies are 2000 and 4000 rad/sec. If carrier frequency is 2 X 10⁶ rad/sec, the frequencies of upper sidebands are a) 1.002 MHz and 1.004 MHz b) 1.001 MHz and 1.002 MHz c) 1.001 MHz and 1.004 MHz d) 1.002 MHz and 1.008 MHz 	
	State whether following statements are true or false:	06
	 For an ideal 3000 Hz channel, S/N ratio is 4. In a single tone AM modulation, the transmission efficiency for m = 1 is 33.3%. 	
	 3) In a superheterodyne receiver, having no RF amplifier, the IF is 455 kHz. The image frequency at 1000 kHz is 545 KHz. 4) E and H field are perpendicular to each other. 	
	 5) A video monitor is exactly similar to TV receiver. 6) Audio tapes have two tracks each 2.5 mm wide. 	
Q.2	tempt the following:	14
	Differentiate between class A, class B and class C modulated power	04
	amplifiers. Draw the block diagram of VCO and explain its operation.	
	With a neat diagram explain the operation of balanced modulator.	05 05
Q.3	Draw the block diagram of a high level modulated AM transmitter and explain each block.	08
	Explain how an amplitude modulated signal be detected.	06
Q.4	Explain the process of multiplication of frequency with a neat circuit diagram.	08
	How PLL can be employed as FM detector? Explain.	06
Q.5	Explain briefly about Delta modulation.	08
	With a neat circuit diagram, explain how a PTM signal be generated?	06
Q.6	Differentiate between ASK, FSK and PSK.	08
	Discuss the characteristics of PN sequences.	06
Q.7	What is frequency hopping spread spectrum? Explain in detail.	08
	Explain how a DS signal can be tracked?	06

Master of Science – I (Electronics Science) Examination: Oct / Nov 2016 Semester – I (New CBCS)


	amination:	Oct / Nov	2016 Sem	ester – I (f	New CB	(S)
SLR No.	Day & Date	Time	Subjec	et Name	Paper No.	Seat No.
SLR – SJ – 335	Wednesday 23/11/2016	10:30 AM to 01:00 PM		ntroller & facing	SCT 1.1	
Instruction	2) Q.No 3) Ansv	wer five quest 0.1 and 2 are wer any three of scientific ca	compulsory. questions fro	m Q.No.3 to (lowed).No.7.	
	,				Total N	Iarks: 70
Q.1 A)	Select the mos 1) In 8051 and data bu a) PORT c) PORT	port of accessing p	s also serves a g external mer b)	ns a bi-direction nory. PORT 1 PORT 3	nal low-ord	er address
	2) a) Carry c) Zero	_ flag is not p	,	Overflow Parity		
	c) Indirect	I RAM locatic r R0 of bank 0 t memory addr ing @R1	b)	l can also be ad Direct memory All of these)H
	 4) In 8051 a) PSEN c) WR 	pair	b)	accessing Exte RD All of these	ernal ROM.	
	 5) An 8 – bit <i>L</i> inputs with a) 1 mV c) 10 mV 	ADC connecte approximately	yb)	having 5V Vre precision. 2 mV 19.53 mV	of can read a	analog
	6) 8051. a) 3 c) 9	_ I/O pins are	required to co b) d)		natrix keyp	ad with
	7) Cold junctia) LM35c) Thermi	-	b)	for Thermocouple LDR		
	 8) The second LCD. a) 00H-0F c) 80H-8F 	Ή	b)	sed at 20H-2FH C0H-CFH	locatio	n in 16*2

	B)	 State whether following statements are True or False: 1) The serial port of 8051 is simplex. 2) The stack pointer of 8051 decrements before storing data on the stack. 3) The 8051 has bit-addressable area of 16 bytes. 4) The Reset pin of 8051 is active high. 5) The 8051 I/O port pins an drive LED directly. 6) The GPS module is used to connect the 8051 kit with GSM networks. 	06
Q.2	A)	Explain unconditional jump instructions of 8051.	05
	B)	Interface relay with 8051	05
	C)	Give specifications of IC LM35	04
Q.3	A)	Draw and explain 8051 as a programmer model.	08
	B)	Give a brief overview of 8051 I/O ports.	06
Q.4	A)	What is the need of timers and counters? Give any two applications of each.	08
	B)	Explain timer configuration in 8051	06
Q.5	A)	Interface DAC0808 with 8051 microcontroller and write programs to generate square wave, sawtooth wave, triangular wave.	10
	B)	What is optocoupler? Give any two applications of optocoupler.	04
Q.6	A)	Compare LM35, thermistor and a thermocouple	04
	B)	Explain with proper schematic diagrams the interfacing of LM35 and thermistor with the microcontroller.	10
Q.7	A)	With a neat diagram explain interfacing of 16x2 LCD display with the microcontroller. Draw and explain waveforms for read/write control word and data to LCD.	08
	B)	Write a program to scroll following text on the LCD display, "Solapur University"	06


Master of Science – I (Electronics Science) Examination: Oct /Nov 2016 Semester – I (Old CBCS)

	Examination :	Oct /Nov 2	016 Semester –	I (Old C	BCS)		
SLR No.	Day & Date	Time	Subject Name	Paper No.	Seat No.		
SLR – SJ 337	Wednesday 16/11/2016	10.30 AM to 01.00 PM	Control Theory	Ι			
Instruction	2) Attempt		s compulsory. stions from Q. no. 3 able calculator is allo	owed.	Marks: 70		
 Q.1 A) Choose correct alternative. 1) The steady-state error of a feedback control system with an acceleration input becomes finite in a							
2)	, vi v	onse of a LTI s	ystem is a unit step fu	•	the		
3)	Peak overshoot o system is explicit a) settling time c) natural freque	ly indicative of	b) rise tin b) rise tin d) dampir	ne	order		
 4) In case of an open loop control system which of the following statement is true? a) Output is dependent of control input b) Output is independent of control input c) Only system parameters have effect on control output d) None of these 5) Routh Hurwitz criterion provides a) roots in right half of s plane. b) roots in left half of s plane and roots on imaginary axis. d) roots in left half of s plane and roots on imaginary axis. 							
						 d) roots in left half of s plane and roots on imaginary axis. 6) When a unit step voltage drives a lag network the output a) remains constant at unit step value b) increase exponentially from zero to final value c) decrease exponentially from 1 to 0 d) either (b) of (c) depending on values of R and C 	

7) The compensator of the given figure is a

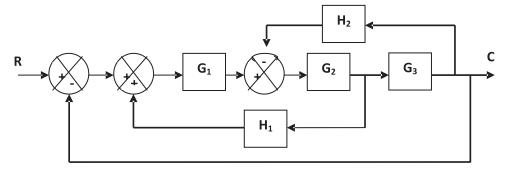
- a) lag compensator b) lead compensator c) lag-lead compensator
 - d) None of the above
- 8) For the system with the given figure, the transfer function H(s) can be represented as

B) State true/ false :

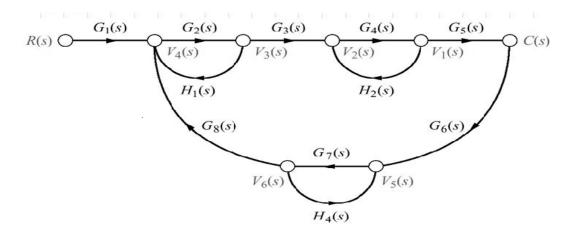
- 1) Delay time is not the time domain specification.
- 2) The commonly used frequency domain method to sketch the frequency response is Nyquist plot.
- 3) If the gain of the open loop system is doubled the gain margin becomes double.
- 4) The signal cannot travel along the direction of arrow only.
- 5) Transfer function of a system is not used to calculate the output for any given input.
- 6) In a control system the output of the controller is given to final control element.

0.2 Attempt the following:

A) Explain the classifications of control system.	05
B) Explain in brief Masons gain formula.	05
C) Briefly describe the frequency domain specifications.	04


Q.3 A) Consider the system with $G(S) \cdot H(S) = K/S(S+2) \cdot (S+4)$. Find whether S=-0.75 08 is on the root locus using angle condition.

06


B) Determine the stability of the system represented by the characteristics equation 06 using Routh's method.

$$S^{3}+6S^{2}+11S+6=0$$

- Q.4 A) Derive an expression for unit step response of first order system. Draw the response. 08
 - **B**) What is control system? Explain effect of feedback on system performance. **06**
- **Q.5** A) Simplify the block diagram for the figure shown below.

B) Find the transfer function, c(s)/r(s), for the signal flow graph shown in figure 07 below.

Q.6	A) Explain PID Controller in detail with suitable equations.	10
	B) Compare open loop and closed loop control system.	04
Q.7	A) What is potentiometer error detector? How do you represent it in the form of block diagram?	08
	B) What is gear train? Derive an expression for motor torque.	06

07

Master of Science – I (Physics - Electronics Science) Examination: Oct / Nov 2016 Semester – I (Old CBCS)

		<u>NOV 2010</u>	<u>Semester</u> -	- I (Old CE	<u>(S)</u>			
SLR No.	Day & Date	Time	Subje	ct Name	Paper No.	Seat No.		
SLR – SJ – 338	Friday 18/11/2016	10.30 AM to 01.00 PM		ocessor and ontroller	II			
Instructions:1) Attempt five questions2) Q. no. 1 and Q. no 2 are compulsory3) Attempt any three questions from Q. No.3 to Q. No. 74) Figures to the right indicate full marks								
					Total Ma	rks: 70		
Q.1 A) Ch	noose correct a	answer				08		
1)	The Intel 808	6 can address	upto	_ memory				
	a) 8KB		b)	64KB				
	c) 1MB		/	8MB				
•	TC1							
2)	The segment a) 8KB	size of 8086 i	us b)	16KB				
	c) 32KB		,	64KB				
	•) •=====			0.1122				
3)			inge of PIC18F					
	a) $DC - 8 N$ a) $DC - 24$		/	DC - 16 MHz				
	c) DC – 24	ΜΠΖ	u)	DC – 48 MHz				
4)	The return ad	dress stack of	f PIC18F4550	allows any com	bination of	up to		
		grams calls a	and interrupts to					
	a) 7 c) 31		/	15 47				
	c) 51		u)	47				
5)	Maximum cu mA		by all ports of	PIC18Fxxxx mi	crocontroll	er is		
	a) 20	•	b)	50				
	c) 100		d)	200				
6)	The special fu space from	nction Regis	ters of PIC18F	xxxx occupy the	e data memo	ory		
	a) 000 to $\overline{08}$	30h	b)	100h to 180h				
	c) F00h to I		/	F60h to FFFh				
7)	In PIC18Fxxx a) Crystal/re		configuration X	T refers to High speed cry	vstal/resona	tor		
	c) External		/	Internal clock	,	•••		
	-		,					

	 8) The Memory Endurance for program memory of PIC18Fxxxx is	06
	 3) In PIC18Fxxxx, setting a TRISA bit will make the corresponding PORTA pin an output 4) Internal Oscillator of PIC18Fxxxx can provide clock frequency of upto 16MHz 5) Timer 0 of PIC18Fxxxx is 16 bit 	
	6) PIC18Fxxxx has 8 x 8 hardware multiplier as part of the ALU	
Q.2	A) Write a short note on 8086 status register	05
	B) Give advantages of PIC18Fxxxx microcontrollers.	05
	C) Write a short note on PIC 8259	04
Q.3	A) With a suitable diagram explain internal architecture of 8086	10
	B) Explain arithmetic instruction of 8086	04
Q.4	A) With a neat diagram explain the architecture of the PIC18Fxxxx microcontroller.	08
	 B) Explain Bit-oriented operations in PIC8Fxxxx microcontrollers with suitable examples. 	06
Q.5	A) Explain the interrupt configuration of PIC18fxxxx microcontrollers	08
	B) Explain the sleep modes of PIC18Fxxxx microcontroller.	06
Q.6	A) What is IDE? Explain the steps in MPLAB IDE for PIC program development.	08
	B) Draw and explain the waveforms for sending data, sending command and checking busy status of smart LCD.	06
Q.7	A) Explain speed control of DC motor using PWM generated by PIC microcontroller.	08
	B) Explain relay and opto – coupler interfacing with PIC ports.	06

Master of Science – I (Electronic Science) Examination: Oct/Nov 2016 Semester – I (Old CBCS)

	_	<u>uto Seme</u>	<u>ster – 1 (</u> (DId CBCS)		
SLR No.	Day & Date	Time	Subj	ect Name	Paper No.	Seat No.
SLR – SJ – 339	Monday 21/11/2016	10:30 AM to 01.00 PM	Communi	cation Systems	III	
Instructions	: 1) All qu	estions carry	v equal mark	s.	-	
		nd Q.2 are co				
	3) Attem	pt any THR	EE questions	s from Q.3 to Q.7 T	'otal Marl	zs• 70
				1		X5. 70
Q.1 A) Cł	noose correct a	lternative				08
1)	-	odulation cau		nt of transmitter po	wer to	_
	a) Increase		,	Decrease		
	c) Remain th	e same	d)	Double		
2)	In FM, the chatter the modulatin	-	r frequency is	s proportional to w	hat attribu	te of
	a) Angle	88	b)	Frequency		
	c) Amplitude	e	· · · · · · · · · · · · · · · · · · ·	Tone		
3)	-		-	n the carrier is call	led	
	a) Modulaticc) Mixing	n	/	Detection Demodulation		
	c) withing		u)	Demodulation		
4)	Two binary va	alues are repr	esented by tw	o different frequer	ncies in	
	a) ASK			FSK		
	c) PSK		d)	DPSK		
5)	The main adv	antage of TD	M over FDM	is that it		
5)	a) needs less			needs less bandw	idth	
	c) needs sim			gives better S/N r		
	1					
6)	In CDMA, the		-			
	a) Chipping	trequency	,	Information rate		
	c) Chip		d)	Epoch		
7)	What is the ca maintained fo			n, if the binary pul	se is	
	a) Return to	zero		Bipolar		
	c) Non-retur	n to zero	d)	Unipolar		
8)	DSSS techniq bit with	ue expands th	ne bandwidth	of a signal by repl	acing each	data
	a) $n + 1$ bits		b)	n -1 bits		
	c) n bits			both a & b		

c) n bits d) both a & b

	B) State whether following statements are true or false:	06
	 TDM system is more immune to inter channel cross-talk as compared to FDM systems. 	
	 The process of impressing information on the carrier is called mixing. Mixer stage mainly determines a communication receiver's sensitivity. 	
	4) BPSK stands for binary pulse shifting key.	
	5) In half duplex communication system, information is transmitted in both directions but the flow is only one way at a given time.6) Frequency hopping is the easiest spread spectrum modulation to use.	
	b) Trequency hopping is the easiest spread spectrum modulation to use.	
Q.2	Attempt any three:	14
	a) Explain the necessity of modulation in electronic communication system.b) State and explain Sampling theorem.c) Write a note on data formats.	
	d) Discuss the basic concepts of spread spectrum modulation.	
Q.3	A) Describe the operation of an AM receiver and detector circuits.	10
	B) What is a PLL? Explain.	04
Q.4	A) Draw the block diagram of low and high level modulated AM transmitters and explain their functioning.	10
	B) Write a note on audio amplifier.	04
Q.5	A) With neat diagram, explain in detail, the pulse amplitude modulation and demodulation circuits.	10
	B) Write a note on generation of PTM.	04
Q.6	A) Discuss FSK modulation and demodulation techniques in detail.	10
	B) Write a note on asynchronous transmission.	04
Q.7	A) With neat block diagram, explain the working of a direct sequence spread spectrum (DSSS) transmitter and receiver.	10
	B) Write a note on applications of spread spectrum.	04

Master of Science – I (Electronics Science) Examination: Oct / Nov 2016 Semester – II (New CBCS)

	Oct / Nov 2016 Semester – II (New CBCS)									
SLR	R No.	Day & Date	Time	Su	bject Name	Paper No.	Seat No.			
	– SJ - 41	Thursday 17/11/2016	10:30 AM to 01:00 PM	Modern	Antenna Design	V				
Insti	 Instructions: 1) Q.No.1 and 2 are compulsory. 2) Answer any three questions from Q.No.3 to Q.No.7. 3) All questions carry equal marks. 									
	Total Marks: 70									
Q.1	Obje	ctive Question	s.				14			
	A)	Select correct	t alternatives:				06			
	,	1) Radiation	intensity is dep	pendent of						
		a) Distan	• •		Both					
		c) Direct	ion	d)	None					
			enna has maxi							
		/	al to the axis	/	Both					
		c) Perper axis	idicular to the	d)	None					
		· ·	ion resistance	-	e of the length λ /10	is				
		a) 80Ω		,	804Ω					
		c) 720 Ω		d)	None					
		4)is directivity		ment of a u	nilateral antenna pro	operties of				
		a) Phase		h)	Antenna gain					
		c) Beamy	-		Bandwidth					
		5) For linear radiation p		lements arra	ay for $d = \lambda / 2$ and d	$\alpha = 0$ the				
		-	al figure of eig	ht b)	Cardioids					
		· · · · · · · · · · · · · · · · · · ·	ontal figure of		Combination of A	&В				
		C	the hearing	nointin	ala of on onterror					
		a) Azimu			gle of an antenna.					
			of elevation		Right angle Beam width					
	B)	State True or	· false:				08			
	-	2) Electroma	•		with horn antenna. me varying voltage	into wave	in free			
		4) Resonant	antenna carries	current of	twice power beam v standing wave. poles and half wave					
		binomial a 7) The anten	array must be g	reater than e pencil bea	e spacing of the eler equal to $\lambda / 2$. Im pattern is Yagi U ncies above 3GHz.		e			

Page **1** of **2**

Q.2	Answer the following:					
	a) b)	Define the radiation resistance and explain its significance. What is effective length? What is its significance in description the performance of linear antenna?	05 05			
	d)	Define corner reflector antenna.	04			
Q.3	An	swer the following:	14			
	a) b)	Derive expression for the retarded potentials. What is meant by directivity? What is meant by antenna beam width?	08 06			
Q.4	An	swer the following:	14			
	a) b)	Explain radiation mechanism of two wires. Discuss the types of lobes. A short vertical grounded antenna is designed to radiate at 10 MHz. Calculate the radiation resistance if the effective height of the antenna is 50 m.	10 04			
Q.5	An	swer the following:	14			
	a)	Write short notes on: i) Broadside arrays ii) EFA	08			
	b)	Define the antenna efficiency. What are different losses associated with the antenna system?	06			
Q.6	An	swer the following:	14			
	a) b)	Describe the parabolic reflector used at micro frequencies? List the applications of helical antenna?	10 04			
Q.7	An	swer the following:	14			
	a) b)	Explain the different types of lens antenna and list their important features. Define reciprocity theorem as application to antenna.	08 06			

Master of Science – I (Electronics Science) Examination: Oct / Nov 2016 Semester – II (New CBCS)

	Examination: Oct / Nov 2016 Semester – II (New CBCS)								
SLR	R No.	Day & Date	Time	Subject Name	Paper No.	Seat No.			
	– SJ - 42	Saturday 19/11/2016	10:30 A.M to 1:00 P.M	Microwave Engineerin	g VI				
Instructions: 1) Q.No.1 and 2 are compulsory. 2) Answer any three questions from Q.No.3 to Q.No.7. 3) All questions carry equal marks. Total Marks: 70									
Q.1	Obje	ctive Questio	ons.			14			
	A)		ect alternative			06			
				rowave frequency bands, the	he frequency rai	nge of			
		C-band i		b) $2CU_{\pi} + 2CU_{\pi}$	Ia				
		· · · · · · · · · · · · · · · · · · ·	z to 2GHz z to 8GHz	b) 2GHz to 4GH d) 8GHz to 12G					
		c) 4011		u) 00112 to 120	1112				
		2) Which o	f the following	is not a Maxwell's equation	n,				
		· ·	$E = -\partial B / \partial t$	b) $\nabla . D = \rho$					
		c) D =	$\in E$	d) $\nabla B = 0$					
		3) The dom	ninant mode in	a particular waueguide is th	ne mode having	the			
			est cut off	b) Middle frequ	ency				
		-	iency		1				
			lest cutoff lency	d) None of the c	lone				
		1	2						
				odes cannot exist in a recta	ngular wavegui	de,			
		a) TE n	node mode	b) TEM mode	hava				
		c) TM	mode	d) None of the a	loove				
		5) The pass line is ca		sed to limit microwave pov	ver in a transmi	ssion			
		a) Isola		b) Phase shifter					
		c) Atter	nuators	d) None of the a	ibove				
		· •	odic fluctuation n was discover	ns of current passing thru t ed by	he n-type GaAs				
		a) J. B.		b) B.C. Reloach	l				
		c) R.C.	Johnston	d) B.G. Cohen					
	B)	of propa 2) A line te	vaves, there is r gation. rminated in its	no component of magnetic f characteristic impedance h					
		ration of	unity.						

		3) The reflex klystron over comes the disadvantages of the two cavity klystron.	
		4) The wave in the TWT is a propagating wave.	
		5) In waveguides, the electric and magnetic fields are confined to the space within the guide only.	
		6) The quality factor Q, of a microstrip line is very high which may be required for high quality resonant MICs.	
		 7) Impedance matching is very desirable in transmission lines. 8) The Gunn diode is always operated in the negative resistance region. 	
Q.2	Wr	ite short notes:	14
	a)	Microwave Spectrum	05
	b) d)	Microwave tubes Stripline attenuator	05 04
	u)		
Q.3	a)	Derive the TE mode field equations in a rectangular waveguide.	10
	b)	Write the Maxwell's equations in both differential and integral forms.	04
Q.4	a)	With necessary diagram, explain the construction and working of a reflex klystron.	10
	b)	Explain the Gunn effect.	04
Q.5	a)	Discuss the various Co-axial and stripline components.	10
	b)	Give an account on impedance matching.	04
Q.6	a)	With neat Diagram, explain the construction and working of waveguide attenuators.	10
	b)	Write a note on waveguide terminations.	04
Q.7	a)	With neat sketch, explain the working of phase shifters.	10
	b)	Write a note on standard mismatches.	04

Master of Science – I (Electronic Science) Examination: Oct / Nov 2016 Semester – II (New CBCS)

	Oct / Nov 2016 Semester – II (New CBCS)									
SLF	R No.	Day & Date			Paper No.	Seat No.				
	– SJ – 43	Tuesday 22/11/2016	10.30 AM To 01.00 PM	Advanced Microcontroller	s VII					
Insti	Instructions: 1) Q. no. 1 and Q. no 2 are compulsory									
		2) Atten	npt any three	e questions from Q. No	o.3 to Q. No. 7					
		3) All qu	lestions carr	y equal marks	T					
					10	tal Marks: 70				
Q.1	A) Sel	lect correct al	ternative				08			
×				e working registers are	in AVR microc	controller?				
	,	a) 16*8 bit	1 1		6*16 bit					
		c) 32*8 bit		d) 32	2*16 bit					
				1 1 6 1	L.					
	2)	AVR external	l interrupts ar	e by defaul						
			lge triggered dge triggered		evel triggered Indefined					
		c) Taning c		u) 0	ndermed					
	3)	AVR port out	put buffers ca	an sink curre	ent.					
		a) 500uA		b) 1.	.6 mA					
		c) 16 mA		d) 20	0 mA					
	4)	AVR uses	instru	action to put MCU into	sleen modes					
	4)	a) IDLE		-	LEEP					
		c) SWAP		d) H						
		,		,						
	5)		MU specifies	S KB map		ge pages				
		a) 1KB		b) 41						
		c) 16KB		d) 64	4KB					
	6)	The ARM920)T processor i	mplements separate in	struction and da	ta caches				
	0)	each of	size.							
		a) 16KB		b) 64	4KB					
		c) 128KB		d) 11	MB					
	D) 64	ate True of Fa	alaa				08			
	,	AVR is a CI		ocontroller			Vð			
		ATmega 16	• •							
				nicrocontrollers start a	t 1000H					
				variable size viz. 1-byte	e, 2-byte or 3-by	/te.				
	,			iple operating system.						
	6) APM 920T has a 7 stage ningling									

- 6) ARM 920T has a 7-stage pipeline.7) ARM 920T Caches are independently lockable with granularity of 64 words.
- 8) The ARM920T processor has only one functional clock input called BCLK

Q.2	Write short notes	14
	A) Explain watchdog timer functionality in AVR.	05
	B) What are the benefits of THUMB mode?	05
	C) Write a short note on AVR Stack.	04
Q.3	A) List and compare features of AVR with other 8-bit microcontroller.	08
	B) Write a short note on AVR Status Register	06
Q.4	A) Explain interrupt system of AVR microcontroller.	10
	B) Write a short note on AVR register file.	04
Q.5	A) Write a program to generate square wave on PORTA pins of AVR.	06
-	B) What is exception? Explain ARM exception processing.	08
Q.6	A) Draw and explain ARM920T functional block diagram.	10
	B) Write a short note on ARM program status register.	04
Q.7	A) What are the responsibilities of Memory Management Unit? Explain the	08
-	concept of virtual memory.	
	B) Explain any three load-store instructions of ARM.	06

Master of Science – I (Electronics Science) Examination: Oct / Nov 2016 Semester – II (Old CGPA)

Oct / Nov 2016 Semester – II (Old CGPA)									
SLF	R No.	Day & Date	Time	Sub	ject Name	Paper No.	Seat No.		
	– SJ - 45	Thursday 17/11/2016	10:30 AM to 01:00 PM	Modern A	Antenna Design	V			
Instr	Instructions:1)Q. No.1 and 2 are compulsory.2)Answer any three questions from Q.No.3 to Q.No.7.3)All questions carry equal marks.								
						Total Ma	rks: 70		
Q.1	Objec A)	1) An anten a) λ	ct alternatives na behaves as a its integral	a resonator c b)	ircuit only when i $\lambda/4$ None of the abov	-	14 08		
		a) Zero c) Unity	2	b) d)	na is Less than unity Infinity				
		a) A fig	ure 'O' pattern nd-fire pattern	b)	A broadside patter None of the above				
		a) Greate length	l length or effe r than its physi to its physical	cal	of an antenna. b) Smaller than d) None of the a	1 0	length		
		· ·	lest parasitic as elements elements	b)	es of Three Elements None of the abov	/e			
		b) Maxi	mum reception mum reception tional pattern i	is perpendio	cular to the axis				
			bandwidth	b)	bes not apply to th Parasitic element High gain		array		

c) Folded dipole d) High gain

		 8) Which of the following antenna is best excited from a waveguide? a) Biconical b) Horn c) Helical d) Discone 	
	B)	 State True or false: The radiation patterns of vertical and horizontal dipoles are identical. Effective area of an antenna is a function of frequency. Radiation beam in broadside array is along the axis of the array. Ideally, reflector size is infinitely large. Cassegrain feed is best suited for low noise receiver applications. Antenna gain is inversely proportional to beam width. 	06
Q.2	Ans	swer the following:	14
	a)	Discuss about the term "Radiation Patter".	05
	b) d)	Write a short note on operation of Yagi - Uda array. Explain the principle of pattern multiplication	05 04
Q.3	a)	Explain the following terms with respect to antenna: i) Radiation intensity ii) Directivity iii) Beam efficiency iv) Gain	08
	b)	What do you understand by effective height and radiation resistance of an antenna?	06
Q.4	a)	Obtain expressions for the far field and power radiated by a half wave	08
	b)	antenna and calculate the radiation resistance of the antenna. Prove that radiation resistance of half wave dipole is 73Ω .	06
Q.5	a)	What is an antenna array factor? Derive an expression for array factor for end-fire array consisting of 'n' isotropic elements.	10
	b)	Give the concept of 'Antenna array scanning.	04
Q.6	a)	Describe in detail the Cassegrain method of feeding a paraboloid reflector with the help of geometry of this feeding arrangement.	08
	b)	With a neat diagram, explain the operation of a folded antenna.	06
Q.7	a) b)	Explain the principle of measuring the radiation pattern of the antenna. Write a note on pyramidal horn antenna with design equations.	08 06

Master of Science – II (Electronics-Communication Science) Examination: Oct / Nov 2016 Semester – II (Old CGPA)

Examination: Oct / Nov 2016 Semester – II (Old CGPA)							
SLR No.	Day & Date	Time	Sub	ject Name	Paper No.	Seat No.	
SLR - SJ - 346	Saturday 19/11/2016	10:30 A.M to 01:00 P.M	Microwa	ve Engineering	VI		
Instructions:1)Q.No.1 and 2 are compulsory.2)Answer any three questions from Q.No.3 to Q.No.7.3)All question carry equal marks.							
a) C		ect alternativ	ensity at a pon b)	ooint is a vector point always tends to i		14 08	
2)	point fun Microwaves a) telephoni c) TV syste	are used for c	/	radio broadcast all of the above			
3)	Which of the a) klystron c) TWT	-	b)	helix klystron oscillato both a & c	or		
4)	-	frequency of f focusing	b)	from a klystron de repeller voltage characteristic of	2	y on	
5)) In a circular a) TM_{01} c) TM_{11}	waveguide wi	b)	the dominant mod TE_{01} TE_{11}	le is		
6)	terminate a) terminato	-	b)	and signals either terminal stations terminal equipme	C		
7)	When the scia) Capacitivec) Resistive	ve	b)	waveguide, its nat Inductive None of the abov			
8)		line the SWR n 3	will be b)	etween a 150Ω re less than 3 either a or c	sistive load a	nd	

	B)	 State True or false/ justify / one line answer. 1) At a conductor to conductor boundary, component of field tangent to the boundary is same in the two conductors. 	06
		2) Maxwell's equation, from Ampere, in phasor form is $\nabla x H = (\sigma + j\omega\varepsilon)E$	
		3) Reflex Klystron oscillator is essentially a low power device.	
		4) In a circular waveguide TE_{21} mode has lowest cutoff frequency.	
		5) A matched termination absorbs all the power incident on it.	
		6) A coaxial line is a non – reading line.	
Q.2	A	Answer in brief.	14
)	1) Enumerate the basic advantages of microwaves and briefly discuss the typical application of microwaves.	05
		 How waveguides are different from normal two wire transmission lines. Discuss the similarities and dissimilarities. 	05
		3) Write a note on TEM to TEM transitions.	04
Q.3	a)	Starting from Maxwell's equations device wave equation for rectangular wave guide.	08
	b)	Write a short note about strip line transmission lines.	06
Q.4	a)	With a neat diagram, explain the working of reflex klystron oscillator.	08
	b)	Explain two valley model theory of Gunn diodes.	06
Q.5	a)	Derive the wave equations for TM wave and obtain all the field components in a rectangular waveguides.	10
	b)	Explain in brief about coaxial lines.	04
Q.6	a)	Discuss in detail the design considerations and working of coaxial and stripline attenuators.	10
	b)	Explain the construction and working of standard coaxial connector.	04
Q.7	a)	List the types of waveguide phase shifters and discuss the working of one in detail.	10
	b)	With a neat sketch describe the waveguide matching terminations.	04

Master of Science – I (Electronics Science) Examination: Oct / Nov 2016 Semester – II (Old CGPA)

		<u>NOV 2010 S</u>	emester – J		CGPA)	
SLR No.	Day & Date	Time	Subject I	Name	Paper No.	Seat No.
SLR – SJ – 347	Tuesday 22/11/2016	10.30 AM To 01.00 PM	Advan Microcont		VII	
Instruction	s: 1) Q. no.	1 and Q. no 2	are compulsor	v	1	
			uestions from		Q. No. 7	
	3) Q.1 sh	ould be answe	red on the que	stion pape		
			idicate full ma			
	5) Use of	nonprogramn	nable calculato	r is allow		al Marks: 70
Q.1 A) C	hoose a correc	t alternative			100	<u>ai warks. 70</u> 08
- ,	The ST X, R1		e of	addressin	ig mode	00
,	,	ct addressing			rect addressi	ing
	c) Data indi	rect addressing	5	d) None	of these	-
- `						
2)			RESET source in		1	
	a) Power-onc) Watchdo			b) Exterrd) All of		
	c) waterido	giesei		u) All Ol	liese	
3)	Which of the	following state	ment is not true	about AV	/R?	
,		VR pointers ca			R has four I	/O ports
		//SPM operation				
	/	AVR instruction	ns can	d) No:	ne of these	
	execute I	n 1 CLK cycle				
4)	Which of the	following state	ment is true ab	out AVR		
,		RISC architec			supports full	y static
				operat		
	c) AVR has	three data poin	nters	d) All of	these	
5)	AVR external	interrunt cab h	be triggered by			
5)	a) Low leve		be inggered by	b) Falling	_ g edge signa	1
	c) Rising ed	-			these signal	
	ý	0 0		,	C C	<i>v</i> 1
6)		pace in ARM is	S			
	a) 2^{24} c) 2^{16}			b) 2^{64} d) 2^{32}		
	c) 2^{16}			d) 2^{32}		
7)	In ARM. PC	is implemented	by using			
,	a) Cashes	1	· · · · ·	b) Heaps		
	c) General j	ourpose register	rs	d) Stack		
	XX/1 · 1 · 0 · 1	C 11 .	· 1 . C			
8)			ides fastest acc	ess b) Hard (dialz	
		oupled memory		d) Regist		
	c) On bound	. mon memory		<i></i>		

	B) State True of False	06
	 Some of the AVR status flags are cleared by writing a logical '1' to them. The AVR code memory has been recognized as 16 bit words. The AVR stack pointer is decremented when the data is popped from the stack. When the external SRAM is interfaced to AVR, ALE signal is used to demultiplex address/data bus. 	
	5) ARM is not a superscalar processor.	
	6) ARM9 microprocessor have combination of RISC and CISC features.	
Q.2	A) Explain SRAM data memory organization in AVR.B) Explain AMBA in ARM.C) Draw and explain status register format of AVR	05 05 04
Q.3	A) Explain the use of interrupts. List the interrupts sources of AVRB) Explain the memory map and memory access instructions of AVR microcontroller	08 09
Q.4	A) Explain port functionality of AVR. List alternate functions of AVR ports.B) Write a short note on analog comparator of AVR	08 06
Q.5	A) Explain registers associated with ADC in AVRB) What is a Prescaler? Explain timer/counter prescaler used in AVR	08 06
Q.6	A) What are the different exception and how they are processed in ARMB) Explain the register structure of the ARM processor.	08 06
Q.7	A) Explain the need for fast interrupt service and a normal interrupt service with their own stack operations in ARM.B) Explain conditional code flags present in CPSR	08 06
	D) Explain containing code hugs present in or ore	

Master of Science – I (Electronics - Communication Science) Examination: Oct/Nov 2016 Semester – II (Old CGPA)

E	Examination: Oct/Nov 2016 Semester – II (Old CGPA)								
SLR No.	Day & Date	Time	Subject Na	ame	Paper No.	Seat No.			
SLR – SJ - 348	Thursday 24/11/2016	10:30 A.M to 01:00 P.M	to Digital Design and VHDL						
Instruction	2) 3)	Answer any t All questions	are compulsory. Three questions fro carry equal mark ogrammable calc	s.	owed.	Marks: 70			
Q.1 A)	/	L code al description. s		in architectu) Case) Wait	ure having	0			
	 2)i odd parity a) Parity c) Comparisation 	generator		he parity bit) Parity ch) Adder	1	parity or			
	a) Same a follow	counter follow as MOD-5 cou ed by a MOD-2 D-7 counter	2 counter	unter is) A decade) None of	e counter				
	4) Generics aa) Entitiec) Proces	S	lly in b d) Architect) Library	tures				
	description a) State v	n? ariable & clock ransitions & ou condition	ing constraint/is/are k itput specifications	e involved in	n a state- m	achine			
	a) AND o	ic logic gates a or OR gates or NAND gates	/	construct a AND or N XOR or XN	OR gates	flip-flop?			

B) State True or false:

- 1) The number of states in FSM in infinite.
- 2) Sequential system exhibits the necessity for the existence of at least one feedback path from output to input.
- 3) Bit-vector type is pre-defined in the standard package as one-dimensional array type comprising each element of BIT type?
- 4) QFP CPLD packaging can provide maximum number of pins on the package due to small size of the pins?
- 5) In delta delay, output follows any changes in input.
- 6) Every entity can have two architectures.
- 7) The fast carry or look-ahead carry circuits found in most 4 bit parallel-adder circuits is used to reduce propagation delay.
- 8) Decoder method of combination circuit implementation is widely adopted with maximum output functions and minimum requirement of IC_s.

Q.2 Attempt the following:

-	a)	Write a short note on generate statement.	05
	b)	Explain the attributes of VHDL.	05
	c)	Compare: Multiplexer and De-multiplexer	04
Q.3	a)	 Explain the following: 1) Entity 2) Architecture 3) Library 	10
	b)	Explain the difference between variable and signal?	04
Q.4	a)	Design 4-bit J Johnsons counter using J-K flip flop with its timing diagram.	08
	b)	Implement the function using PLA. $f_1=\sum m (1,2,3), f_2=\sum m (0,2,4,7)$	06
Q.5	a)	What is a decoder? Write the VHDL code for 3:8 decoder and draw its truth table also.	08
	b)	Write the VHDL code for 4:1 multiplexer.	06
Q.6	a)	Design parity generator using K map and draw its logic diagram.	08
	b)	Explain operator overloading with a suitable example.	06
Q.7	a)	Draw architecture of altera Flex10 K and explain in brief.	10
	b)	Write a VHDL code for half adder.	04

Master of Science – II (Electronic- Communication Science) Examination: Oct/Nov 2016 Semester – III (CGPA Pattern)

SLR No.	Day & Date	Time		ect Name	Paper No.	Seat No.
SLR – SJ 349	Wednesday 16/11/2016	2:30 PM to 05.00 PM	Digital Sig	nal Processing	IX IX	
Instruction	s: 1) All q	uestions carry	y equal marks	5.		
		nd Q.2 are co				
			-	from Q.3 to Q.7		
	4) Use (or non-progra	mmable calci	llator is allowed.	Total Mar	ks• 70
Q.1 A) S	elect the most	correct altern	native-		1 otar mar	08
•				alized average pow	ver is non-ze	ro
	and finite.					
	a) Power sig		/	Even		
	c) Energy si	ignal	d)	Odd		
2) A system is a	and to be	system if ou	tput at any instant	of time den	nde
	•		•	t does not depend of		
	a) Anti-caus		1	Continuous	In ruture mp	iuts.
	c) Causal			Discrete		
3		e as well as at	other times is b)	f time depends on called Causal Anti-causal	· ·	es at
4) Z-transform	of delayed uni	t impulse func	tion is		
	a) Z^{-1}	5	b)	Z ^(n-k)		
	c) $Z^{(n+k)}$		d)	Z^{-n}		
5) Z-transform	of unit step fui	nction is			
	a) Z/Z-1	*		Z/Z-n		
	c) Z/Z -(n+k		<i>,</i>	Z/Z-(n-k)		
6) Inverse Z-tra a) $\propto^{-n} u(n)$	nsform of Z/Z	∝ is			
	a) $\propto^{-n} u(n)$)	b)	$\propto^n u(n)$		
	c) $\propto^{-n} u(n)$	- 1)	d)	$\propto^n u(n-1)$		
7		pout the point : folding	zero on the cir b)	shows that s cle. Circular even Circular advance	sequence is	
8) DFT of ∂ (n)	is				
8) DFT of ∂ (n) a) 1 c) $e^{(-j2\pi kn)} 0/$			$e^{i2\pi kn}$ ₀ / N		

	B)	State whether following statements are true or false:	06
		 In DFT the continues frequency spectrum X (ω) is replaced by Discrete Fourier Spectrum. The result of circular convolution and liner convolution is same. 	
		 DTFT detail with infinite samples. DFT of odd function is Odd and imaginary. 	
		5) DFT of ∂ (n) is $e^{-j2\pi kn0}$.	
		6) Z-Transform of unit impulse is $X(Z) = Z^{-K}$	
Q.2	W	rite brief notes on the following:	
	a)	Find the fundamental period of the following signal $x(n) = 10 \sin(12\pi t) + 4 \sin(18\pi t)$	05
	b)	x (n) = $\{1,1,1,1,2\}$, sketch the signal x (n) u (n-1) \uparrow	05
	c)	Check whether the system is liner or not y $(n) = x (n) + n x (n + 1)$	04
Q.3	a)	Find the liner convolution by tabulation method: x (n) = (1, 2, 3, 1); h (n) = (1, 2, 1, -1) \uparrow	08
	b)	Prove that any arbitrary signal can be expressed as the sum of two signals, one of which is EVEN and other is ODD.	06
Q.4	a)	Determine Z-transform of x (n) = $(\cos \omega_0 n) u(n)$	08
	b)	Explain time shift property of Z-transform.	06
Q.5	a)	Determine inverse Z-transform by partial fraction method. $X(Z) = 1/(1-1.5Z^{-1} + 0.5Z^{-2}) $ If i) ROC : $ Z > 1$ ii) ROC : $ Z > 0.5$ iii) ROC: $0.5 < Z < 1.0$	08
	b)	Obtain N-point DFT of exponential sequence. $x(n) = a^n u(n)$ for $0 \le n \le N-1$	06
Q.6	a)	Explain cyclic property of twiddle factor.	08
	b)	Obtain the circular convolution by graphical method of the following: $x (n) = (1.5)^n$ $0 \le n \le 2$ $y (n) = 2n-3$ $0 \le n \le 3$	06
Q.7	a)	Explain in detail overlap and save method.	08
	b)	Explain the relationship between DFT and Z-Transform.	06

E	xamination	n: Oct / N	ov 2016 Semester – III	(Old C	GPA)
SLR No.	Day & Date	Time	Subject Name	Paper No.	Seat No.
SLR – SJ 350	Friday 18/11/2016	02:30 PM to 05.00 PM	Digital Communication	X	
Instru	2)	Q.1 and Q.2	ns carry equal marks. 2 are compulsory. y THREE questions from Q.3	3 to Q.7 Total Ma	arks: 70
- /	· ·	stem, the nun uency is 4 kH	ernative- hber of quantization levels is 32 z. The bit transmission rate is _ b) 16 kbps d) 40 kbps	2 and the ma	06 aximum
	maximum a) all prob b) two of c) the pro	when babilities are of the probabilit babilities are	ties equal 1 and two other are ze	eros	
	3) The codinga) 1/reducec) 1- reduce	ndancy	given by b) 1 + redur d) None of t		
	4) If fm is mo	odulating freq	uency than aliasing occurs, who	en Nyquist	rate is
	a) 2 fm c) 2.5 fm		b) 3 fmd) 1.2 fm		
	5) The phase	difference bet	tween two possible transmitted	signals in (QPSK is
	a) π c) π/4		 b) π/2 d) π/m 		
	6) Which of ta) ASKc) BFSK	he following	gives maximum probability of b) BPSK d) DPSK	error	
B) \$	State whether	following sta	atements are true or false:		08
	2^M.2) Multiplexi	ng techniques	bise free channel having M syn s provide security in digital con sentation, more opening of the	nmunicatior	1.
	distortion.	SV is higher t			

Master of Science – II (Electronic- Communication Science) Examination: Oct / Nov 2016 Semester – III (Old CGPA)

4) BW of BPSK is higher than BFSK.

	 5) The information rate is defined to be average number of bits of information/second. 6) Compared to binary signaling scheme Mary signaling scheme are more complex. 7) Tossing of a coin is the example of continuous random variable. 'Man bites dog' – This statement carries maximum information. 								
Q.2	 Write Short notes: a) Adaptive Equalizer b) Adaptive delta modulation c) Stationarity and Ergodicity of random processes 								
Q.3	a) What is mutual information? Prove I $(X,Y) = H(X) - H(X / Y)$	08							
	b) Prove Bay's theorem.	06							
Q.4	a) With block diagram explain working of PCM system. How does it differs with respect to DPCM.	08							
	b) Find all code words for (6, 3) cyclic code for generator polynomial g (x) = $1+x^2$.	06							
Q.5	 a) Apply the Huffman coding procedure for the following message ensemble. Calculate its efficiency. 	08							
	$[X] = [x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8]$ $[P] = [1/4 1/8 1/16 1/16 1/16 1/4 1/16 1/8]$								
	Assume $M = 2$								
	b) Explain frame synchronization.	06							
.									
Q.6	a) Find all code vectrors for a (6, 3) linear block code for given generator matrix, draw encoder. Also write its parity check matrix.	08							
	$G = \begin{bmatrix} 1 & 0 & 0 & & 1 & 1 & 0 \\ 0 & 1 & 0 & & 0 & 1 & 1 \\ 0 & 0 & 1 & & 1 & 0 & 1 \end{bmatrix}$								
	b) What is information and entropy? Explain the characteristics of entropy.	06							
07									
Q.7	a) Explain M-ary PSK modulation in detail.b) Compare random variables.	08 06							
	of compute function variables.								

SLR No.	Day & Date	Time	emester – III (Old CG Subject Name	Paper No.	Seat No.
SLR – SJ – 351	Monday 21/11/2016	02:30 PM to 05:00 PM	Satellite Communication	XI	
Inst		Answer any t	are compulsory. hree questions from Q.No.3 t carry equal marks.		
				Total M	arks: 70
Q.1 A)	Select correct 1) Kepler's th a) $T^2 \alpha$ c) $T^2 \alpha$	hird law states?	b) T ³ α a ³ d) None of th	ese	
	a) The po	eans bint smallest fro bint Farthest fro	ý 1		a earth
	· ·	e of operating f	re Satellite Link parameters? requency b) Propagation d) None of the		ution
	a) Whethe	pplication of sat r forecasting o point commu	tellite systems? b) Terrestrial c nication d) None of the		tion
	5) Mention th	ne service of sa	tellite systems.		
		casting satellite ation transmiss			
	design? a) Absorp b) Variou c) Gain o	ption of signal is noise sources	actor is taken into account for s s present ad receiving antenna at both en		ζ
	7) For global a) 1 c) 7	communicatio	n. The minimum number of sat b) 3 d) 11	tellites need	ded is
	8) The freque	ency band used	by most satellite is b) VHF		

a) UHFc) SHF b) VHFd) EHF

B) State True or false:

- 1) Inclination and Azimuth angles determine where to point an earth station so that it intercepts the satellite.
- 2) AOCS subsystem is controlled by earth station.
- 3) VSAT stands for very Demand Access Multiple Assigned.
- 4) DAMA stands for Demand Access Multiple Assigned
- 5) Absorption of signal is one of the factor taken into account for satellite link design.
- 6) MEO is placed in the range 400 to 1000 in above the earth.

Q.2 Write a short note:

	a) b) c)	Reference burst Satellite Radio Broadcasting LEO and MEO	05 05 04
Q.3	a)	Derive the expression for up-link and down link design.	08
	b)	Define noise figure and noise temperature.	06
Q.4	a)	Satellite is in an elliptical orbit with a perigee of 1000 Km and an apogee of 4000 Km. Using a mean earth radius of 6378.14 Km. Find the period of the orbit in hours. Minutes and seconds also find eccentricity of the orbit.	08
	b)	Briefly describe the three axis method of satellite stabilization.	06
Q.5	a)	With a block diagram describe the working of Telemetry. Tracking and Antenna of satellite subsystem.	08
	b)	Explain single and double conversion.	06
Q.6	a)	Explain : i) Elliptical orbit ii) Molhiya orbit iii) Radiation orbit	08
	b)	Compare between TDMA, FDMA and CDMA system.	06
Q.7	a)	Explain in detail 'Irridium'.	08
	b)	Explain working of GPS system	06

Master of Science – II (Electronic Science) Examination: Oct / Nov 201 Semester – III (New CBCS)

			201 Semester = II					
SLR No.	Day & Date	Time	Subject Name	Paper No.	Seat No.			
SLR – SJ 353	Wednesday 16/11/2016	2:30 PM to 05.00 PM	Digital Signal Processi	ng IX				
Instructions:1) All questions carry equal marks.2) Q.1 and Q.2 are compulsory.3) Attempt any THREE questions from Q.3 to Q.74) Use of non-programmable calculator is allowed.Total Marks: 70								
•	lect the most c The signal sec sequence x(n) a) Delayed	uence x(n-4)	ative- is by 4 samples w.r. b) Advance	0 0	07 al			
	c) Folded		d) b and c					
3) 4)	 a) Folding c) Amplifica The filter used a) Band Pass c) Band Stop For left sided a) Entire Z-p b) Entire Z-p c) Entire Z-p d) Entire Z-p 	tion I in reconstruct finite duration lane except Z lane except Z lane except Z lane	-	ation ation sampled signa ass ass	l is			
5)	DFT of $\delta(n)$: a) = 0 c) < 1	is	b) = 1 d) > 1					
6)	Window meth a) Fourier c) Discrete F		sign is also called as b) Inverse d) Fast Fo	Fourier				
7)	FIR Digital fila) Adderc) Multiplier	-	d with b) Delay d) All of t	he above				

	B)	State whether following statements are true or false:	07
	,	 The discrete time signal with period of 'N' is said to be periodic if x(n) > x(n+N). The origin shifts with the folding of a signal sequence. Static systems are memory-less systems. Down Scaling of signal sequence w.r.t. amplitude causes amplification of a signal. LTI system obeys superposition theorem. 	
		6) ROC is always a connected region.7) Digital filters are not suitable at very low frequency.	
Q.2	W	rite brief notes on the following:	
	a) b) c)	Block diagram of DSP system. State the merits of FFT algorithm over direct DFT Linearity and time reversal properties of Z-transform	05 04 05
Q.3	a)	State and explain Sampling Theorem.	06
	b)	What is meant by linear convolution? Compute the linear convolution of the following sequences using graphical method: x (n) = $\{1, 2, 1, 2\}$ and h (n) = $\{2, 2, -1, 1\}$	08
Q.4	a)	Distinguish between Discrete Fourier Transform and Discrete Time Fourier Transform. Give the significance twiddle factor?	06
	b)	What is a circular convolution? Find the circular convolution of two sequences using matrix method: $x (n) = \{0, 2, 1, 3\}$ and $h (n) = \{1, 2, -1, -2\}$	08
Q.5	a)	Define Z-Transform. Obtain Z-transform and Region of Convergence of finite duration sequence: $x(n) = \{1, 2, 4, 5, 0, 6\}$	06
	b)	Discuss Direct Form-I realization of a LTI system described by following difference equation. y(n) = 3y(n-1) + 5y(n-2) + 4x(n) + 2x(n-1) + 6x(n-2)	08
Q.6	a)	Explain DIF algorithm of FFT implementation.	06
	b)	Compute 4-point DFT of a sequence $x(n) = \{1, -1, 2, -2\}$ using DIF algorithm. Draw respective diagram.	08
Q.7	a)	Explain the Impulse Invariant method of IIR digital filter design.	06
	b)	Find H (z) by applying Impulse Invariant technique to H (s) = $5/(S^2 + 5s + 6)$ with T=1 sec	08

Examination: Oct/Nov 2016 Semester – III (New CBCS)							
SLR No.	No. Day & Time Subject Name Paper Seat No.						
SLR – SJ 354	Friday 18/11/2016	2:30 PM to 05.00 PM	Digital Communication	X			
Instruction	2) Q.1 3) Att	and Q.2 are empt any TH	rry equal marks. e compulsory. IREE questions from Q.3 grammable calculator is al	lowed.	Aarks: 70		
- /	b) Decreac) Increas	m quantization ion in transm se in maximu e in SNR for	on leads to ission bandwidth		06		
	 a) 256 c) 87.6 3) If dmin = 5 		ue of μ -law companding is b) 255 d) 86.7 cts up to and correct b) 5, 4	s up to	_		
2	a) 3, 2 c) 4, 2 4) If bandwid \overline{a} 30, 000 c) 3, 000b	bits/sec	d) 2, 1 and S/N = 10^3 , then capacities b) 30, 0	ty of channel 00bits/symbol 0bits/symbol			
5			ving is widely used modulat b) FSK	2	?		
e	 5) The bit rate a) 8 c) 2 	e of ADM is _	b) 1 d) >2				
1	 Shanon-hea capacity. The best tin largest. 	artly theorem me to sample schemes con	atements are true or false: indicates that a noiseless c the received waveform is v serve the channel bandwidt	hannel has an when the eye c	opening is		

Master of Science – II (Electronic Science)

requires more power.A random process is said to be ergodic if time averages not equal to ensemble averages.

Page **1** of **2**

- 5) Coasts loop method is used for the symbol synchronization.
- 6) The (hamming) weight of a code vector is defined as the total number of nonzero components of C.
- The parity check matrix can be used to verify whether a codeword C is generated by the matrix G.
 The hardware implementation of FSK is more complex than PSK.

Q.2 Answer the following:

	b) Expla	a short not in power sj is BCH co	pectral den	-			esses.		05 05 04
Q.3	a) What are the advantages of M-ary signaling scheme over binary? Explain M-ary PSK system with the help of a neat block diagram of transmitter and receiver.							10	
	symb	crete source ol probabil e entropy a	ities are 1/2	2, 1/4, 1/8,					04
Q.4		crete memo rence as sh			following	symbols v	vith probal	oility of	10
	Symbol	S0	S1	S2	S3	S4	S5	S6	
	Probabilit y	0.25	0.25	0.125	0.125	0.125	0.0625	0.0625	
	Dete	rmine the H	Iuffman co	de of each	n symbol a	nd calcula	te code eff	ficiency.	
	b) Write	a short not	te on error	correcting	codes.				04
Q.5		enerator m rs of this co	ode.		-	-	w. Find all	the code	08
			<i>G</i> =	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	0 1 1 1 0 1 1 1 0				
	b) What	is the need	of quantiz	zer in digit	al commu	nication?			06
Q.6	/	the help of ver of a pul		•	, explain tl	he working	g of transm	nitter and	08
	b) Write	a short not	te on eye d	iagram.					06
Q.7	/ 1	in what do se response			ed filter? D	Derive an e	xpression	for	08
	b) Expla	in the early	v late bit sy	nchronize	r.				06

Master of Science – I (Electronics Science) Examination: Oct/Nov 2016 Semester – III (New CBCS)

	Day (R ₇		emester – I			,	a
SLR No.	Dat		Time Subject Name		Paper No.	Seat No.		
SLR – SJ - 355	21/11/2 Monda	016 av	:30 PM to :00 PM	Satellite Con	ımu	inication	XI	
Inst	ructions:	2) An 3) All	swer any question	2 are compulse three question s carry equal r rogrammable o	s fr nar	ks.	-	urks: 70
Q.1 A)	1) equa a) E	orrect alt ang torial plan Elevation nclination	gle is an a ne.	: ngle that the orl		Azimuth	es with the	(
	the e a) 1 c) 1 3) EIRI a) F b) 7 c) 0	earth static $180^{\circ}\alpha$ $180^{\circ} - \alpha$ P is the pr Receiving Fransmitti Gain of tra	on, then the oduct of - power, gang power unsmitting	s in the northern and Azimuth angle and ain of receiving , receiving powe g antenna, gain of , gain of transm	e is b) d) ante er	$\frac{180^\circ + \alpha}{\alpha}$		s Se of
	4) A dia a) F	sh antenna	• •	e of ante	nna b)	-		
	a) 0	nge time o).01%).1-0.5%	f Ka-band	l is pe	b)	ar. 0.1% 0.5%		
	a) I	nge in the Doppler sh Fransit ou	nift	ane is called		Retrograd Precession		
B)		rue or fal		e is in between	zerc	and one.		
	(2) The	The first satellite successfully lounshed by US was Teleter I						

2) The first satellite successfully launched by US was Telstar-I.

- 3) Output power of a linear transponder is constant.
- 4) The Frequency band of DBS TV in ITU Region-1 is 10.7 12.75 GHz.
- 5) GPS constellation is designed for business links.
- 6) The ration of carrier to noise in inversely proportional to the ratio of gain to temperature of the system.
- 7) A VSAT earth station receiver system uses cassegrain antenna.
- 8) Elliptical orbit is a type of non-geo synchronous orbit.

Q.2 Answer the following:

a)	Explain telemetry and monitoring system of a satellite.	05
b)	Write down the Kepler's three laws of planetary motion.	05
d)	What is Inclined orbit?	04

Q.3 Answer the following:

	a)	A satellite is an elliptical orbit with a perigee of 1000 km and an apogee of 4000 Km. Using a mean earth radius of 6378.14 Km, find the period of the orbit in hours, minutes, and seconds and the eccentricity of the orbit.	07
	b)	Write down the three prototype models which give reliability to maintain the space qualifications.	07
Q.4	Ans	swer the following:	
	a)	What AOCS sub-system? Give a brief account of spinner and three axis stabilized satellite with a neat block diagram.	08
	b)	Write down the three prototype models which give reliability to maintain the space qualifications.	06
Q.5	a)	Satellite at a distance of 40000 km from a point on the earth's surface radiates a power of 10W from an antenna with a gain of 17dB in the direction of the observer. Find the flux density at the receiving point and the power received by an antenna at this point with an effective area of 10m ² .	05
	b)	Explain satellite link design procedure.	05
	c)	Write a note on CDMA.	04
Q.6	a)	Explain coverage and frequency considerations of NGSO satellite	06
	b)	Explain the three segments of GPS.	08
Q.7	a)	What is DBS-TV? Explain digital DBS-TV.	08
	b)	Discuss the advantages of satellite communication. Give the brief explanation of working of satellite communication.	06

Master of Science – II Electronics (Communication Science) Examination: Oct / Nov 2016 Semester – III (New CBCS)

Exa	amination: (Oct / Nov	2016 Semester – III (N	New CB	CS)
SLR No.	Day & Date	Time	Subject Name	Paper No.	Seat No.
SLR – SJ – 356	Wednesday 23/11/2016	02:30 PM to 05:00 PM	Internetworking and Data communication	ХП	
Instruction	2)	Answer any t	are compulsory. hree questions from Q.No.3 t carry equal marks.		arks: 70
Q.1 A)	 c) Optical 2) Which of the algorithm of	for ystem information service implet the following a tates troublesh to the complex s. ys layers devel the above of the OSI moot al, Data Link, T ation ation, Presentation ation, Encryption	tion b) Operating mentation d) None of th re benefits of using a layered no	ne above m etwork mo ore manage teroperate. resentation ork, Data L al Link Co	ention del? able , .ink, ntrol,
	 a) 4 c) 6 5) Which of the analysis of the analysis	& FTP he following a ation, Presenta ation	b) 5 d) 7 re Transport layer protocols? b) TCP & UD d) ATM re considered to be the upper la tion & Session tion, Session & Transport		ols?
	7) Flow contr a) Transpo	-	at what layer? b) Application		

a) Transportb) Applicationc) Data Linkd) Network

		8) Thelayer is responsible for carrying packetsa) Networkb) Dumpc) Logicald) Sample	
	B)	 State True or false: Bridges & Routers work on same principle. Terrestrial Microwave is an unguided media. Routing can be used from mobile hosts. Congestion control can be done in virtual subnets & choke packets. Domain name specification is website address Sliding window is a Data Link protocol. 	06
Q.2	a) b) c)	What is the 'channel allocation problem? List the modes of operation of HDLC and elaborate on them. Why do we need to establish layers in a protocol?	05 05 04
Q.3	a)	State the functions of each layer in an OSI model.	10
	b)	Compare between LAN and WAN	04
Q.4	a) b)	What is congestion in network? How is it controlled in TCP? Compare between flow based and mobile host routing.	10 04
Q.5	a)	Explain the shortest path routing algorithm	10
	b)	Compare between flow based and mobile host routing.	04
Q.6	a)	State and elaborate on the design issues of physical later	08
	b)	Compare between TCP/IP and OSI model.	06
Q.7	a)	With block schematics explain the different types of modems.	08
	b)	Why do we need computer network? State the applications of computer networks.	06

SLR No.	Day & Date	Time	Subject Nam	e Paper No.	Seat No.
SLR – SJ-	Thursday 17/11/2016	02.30 PM to	VLSI Design	n XIII	
359		05.00 PM			
Instructions	2) Attempt	n No. 1 and 2 i t any three que to right indica	estions from Q.no.	3 to Q. no. 7	
	, C			Total Mark	s: 70
· · · · ·	oose correct alto The major disad		om design approach	i is:	06
	a) Smallest chip	o area	speci	est match of fication with custon	ner
	c) Longest time	to market	-	rement est design cost.	
2)	, <u> </u>		ull up to Pull down	ratio $7/7$:	
	a) = 1		b) = 4	Tatio Zpu/Zpd.	
	c) = 8		d) = 2		
	The Dynamic po a) Remains alw		in CMOS inverter		
	b) Is some value	e independent o			
	c) Decreases withd) Increases with				
4)	As clock input ir	a D-latch goes	high		
	a) The Q output	t will be high	-		
	b) The latch bedc) The Q output	-	ent		
	, - I	es in storage mo	ode.		
5)	In a ripple carry				
	-	carry bit is call peration simulta	culated from the pre	evious full adder	
	c) Has no propa		5		
	d) Does not hav	e sum and carry	y outputs		
· · · · · · · · · · · · · · · · · · ·	The correct orde				
	-		nesis, Simulation, Ir entry, Simulation,	-	
	c) Simulation, S	Schematic entry	, Logic Synthesis, I	Implementation	
	d) Schematic er	itry, Logic Synt	hesis, Implementat	ion, Simulation	

	B) State true/ false :	08
	 The standard cells are fixed-height, variable-width cells. Logical effort is a technique to estimate delay in a CMOS circuit. A transmission gate uses CMOS transistor only. EEPROM should be removed from the board for reprogramming Synchronous clocking does not allow design automation PSoC or programmable system-on-chip is offered by Cypress Super MOS circuits decrease effect of channel length modulation 	
	8) An analog-to-digital converter is a mixed-signal circuit.	
Q.2	 Write short note on the following: A) Linear Voltage – Current Converters B) Schematic entry and Logic Synthesis C) Transmission gates 	05 05 04
Q.3	Answer the following:	
	A) Explain the ASIC design flow.	10
	B) Why array based implementation of digital ICs is preferred?	04
Q.4	Answer the following:	
	A) Draw neat diagram of CMOS inverter and explain the VTC. How is the noise	08
	margin estimated and optimized?B) Explain the detailed design process for n-bit SIPO and SISO shift registers. How is it converted into ring oscillator?	06
Q.5	Answer the following:	
-	A) Explain the Lay out design of a CMOS gate. Estimate the area associated with	08
	a 2-input NAND gate.B) How is a Combinational Logic Cell designed? Explain with example of a digital multiplexer.	06
Q.6	Answer the following:	
	A) State important feature of SPARTAN 6 FPGAs. How is it programmed?B) How does the Analog and Mixed Signal design distinguish from the Digital design? Which one of them is more complex? Why?	08 06
Q.7	Answer the following:	
-	A) How are the thermal and humidity sensors interfaced to ASICs?B) Explain operation of Nyquist rate A/D converters.	10 04

Master of Science – II (Electronics-Communication Science) Examination: Oct / Nov 2016 Semester – IV (New CGPA)

Exa	mination:	UCL/NOV	2016 Sem	'A)				
SLR No.	Day & Date	Time	Subj	ect Name	Paper No.	Seat No.		
SLR – SJ - 360	Saturday 19/11/2016	2:30 P.M to 5:00 P.M	Mobile C	ommunication	XIV			
Instruction	Instructions:1) Questions No.1 and 2 are compulsory2) Attempt any 3 questions from Q.No.3 to Q. No. 7.3) All questions carry equal marks.							
Q.1 A)	Choose the	correct alter	native given i	n the bracket.		06		
	 Find odd a) AMF c) CDM 	PS	b)	S, UMTS, CDMA, UMTS BPRN	BPRN			
	 2) A GSM : a) 51 c) 1236 	1	b)	multiframes. 26 2,715,648				
	3) Which oa) IEEEc) IEEE	802.11	/	PANSs? IEEE 802.3 WATM				
	, I	nt discovery	,	model. Agent solicitation All of above				
	immedia a) p per c) Non	tely if the me sistent CSMA persistent CS channels of C kbps	dium is idle, it A b) MA d) GSM carry data b)	1 persistent CSMA CSMA/CA	-			
B)	 State either 1) A CDMA 2) In a GSM RSS. 3) Universa 4) In ARFC 5) Maximum 	True/ False A phone is an <i>I</i> system, mo I Frequency I CN, letter 'A' m paging cha	example of ad bile stations & Reuse is proper means Adaptiv nnels on a forv	hoc device. base station subsys	e eight.	08		

- A network mobility supporting ATM switch is RS.
- 8) In a mobile IP, a tunnel usually ends at FA.

Q.2	 Write a short notes on the following: a) Compare wired and wireless networks b) Why cells are hexagonal c) Snooping TCP 	14 05 04 05				
Q.3	Long answer questions:a) With suitable example explain frequency reuse and discuss relationsh between number of users, no of cells per cluster and number of cluster	1				
	b) With suitable example show how user capacity increases by decreasing cluster size. What is trade off for this?	ng 06				
Q.4	Long answer questions:a) With suitable diagram explain signal processing in a GSM system.	08				
	b) What are the different features of IS 95?	06				
Q.5	 .5 Long answer questions: a) With suitable block diagram explain forward CDMA channels signal processing. 					
	b) Describe infrastructure architecture for WLAN.	06				
Q.6	Long answer questions:a) With suitable diagrams explain IEEE 802.11 MAC frame.					
	b) Explain indirect TCP.	06				
Q.7	Long answer questions:a) Draw & explain link manager protocol in a Bluetooth.	08				
	b) Draw and explain in short-a generic WATM reference model.	06				

Master of Science – II (Electronics-Communication Science) Examination: Oct / Nov 2016 Semester – IV (New CGPA)

	<u>Exa</u>	mination:	Oct / Nov 2	016 Semester -	<u>– IV (INEW C</u>	<u>GPA)</u>
SLR	R No.	Day & Date	Time	Subject Name	Paper No.	Seat No.
SLR – SJ – 361		Tuesday 22/11/2016	02.30 PM To 05.00 PM Fiber Optic Communication	n XV		
Instr	uctions	2) Attemp 3) All que	stions carry eq	estions from Q. No.		l Marks: 70
Q.1	A) Se	lect correct alt	ernative			00
Q.I	· ·		ce provides the s n light source	-	to modulate at fr bove	
	2)	a) Ultra pure	or preparation o material powde per preparation		nal glass refining	g technique
	3)	The optical can a) 10^{13} to 10 c) 10^{13} to 10^{13}	¹⁶ Hz	/	¹⁴ to 10 ¹⁶ Hz ¹¹ to 10 ¹⁶ Hz	
	4)	a) Single mo	spersion occur in de fiber de graded index	b)	Multimode fibe None of these	er
	5)	Microscopic m a) Microben c) Non linea	ding	<i>,</i>	own as near Bending rcular bending	
	6)	In optical fiber a) Spectral lo c) Absorptio	DSS	,	measured spersion loss one of these	
	1) 2) 3) 4)	Material abso and the fabric Meridional ra Photon energy Insertion loss A permanent factory is kno	ation process fo y which passes fo y is inversely pro- is to measure th joint formed bet wn as a Fiber sp est bandwidth le	nechanism related to r the fiber. through the cross second oportional to wavele be diameter of optica tween two individua	ction of fiber. ength. Il fiber I optical fibers ir	the field or
	7)	The most com projection (sh	nmon on-line me adow method) f	easurement techniqu for the measurement (ttering) is mainly a	of outer diameter	er of fiber.

Q.2	Write short notes	
	A) Explain fiber alignment and joint loss?	05
	B) Explain the principle of PIN photodiode?	05
	C) Explain briefly cut-off wavelength measurement method?	04
Q.3	A) Using the simple ray theory of light, describe the mechanism for the transmission of light within an optical fiber?	08
	B) An optical fiber has a numerical aperture of 0.20 and a cladding refractive index of 1.59 determine the acceptance angle for the fiber in water has a refractive index of 1.33.	06
Q.4	A) Briefly writes about step index and graded index fiber?	08
	B) Explain the requirement of optical cable design	06
Q.5	A) Explain the concept of double heterojunction LED with neat sketch?	08
	B) A P-N photodiode has a quantum efficiency of 60% at a wavelength of $0.9\mu m$ calculate	06
	1. Its responsitivity at $0.9\mu m$	
	2. Received optical power if mean photocurrent is 10^{-6} A.	
Q.6	A) The radiative and nonradiative recombination lifetime of the minority carries in the active region of a double heterojunction LED are 60ns and 100 ns respectively. Determine the total carrier recombination lifetime and power internally generated within the device when peak emission wavelength is 0.87 at a drive current of 40mA	08
	B) Explain the different advantages and disadvantages of LED as compare to laser?	06
Q.7	A) Briefly explain how Numerical Aperture is measured in optical fiber?B) Write a short note on receiver noise?	08 06

Master of Science – II (Communication Science) Examination: Oct / Nov 2016 Semester – IV (New CGPA)

SLR No.	Day & Date	Time	Subject	Name	Paper No.	Seat No.	
SLR – SJ – 362		2:30 P.M to 5:00 P.M	Communicati	on Protocols	XVI		
Instruction	2) Atte	1 V	pulsory. ee from Q. 3 to (ght indicate full	-	Total N	Iarks: 70	
Q.1 A)	 alternatives. 1) I²C is used a) Microod c) Difference 2) OMC provided the mathematical sector of the mathematical sector of	l for communi controller and ent nodes in au	utomobiles		and peripting in motor v	herals	08
	,	e text format n et	name of	 a) Thir approx b) WAP d) All of abov 			
	4) Two plane e) GGSN g) User, o	, SGSN		e are f) SNDCP, BS h) CER, PER			
	5) Which ofa) Call wc) Call back	aiting		ry service? b) Ring back t d) Online gam			
	6) BSC comm a) G _b c) A _{bis}	nunicates BTS	1	b) G _i d) G _d			
	7) UMTS de a) 2G c) 3GPP	velopment is u		b) 2.5G d) 3GPP2			
	b) Mobilic) Multip	e Ad-hoc $\overline{\text{Netv}}$		Ferminal			

	B)	 State True or False: IS-95 provides different path for voice and data transmission. Customer Edge Router performs the border gateway functionality for GPRS operator's networks. In the GSM network, if the terminal is under observation from the network for possible problem, are called black listed terminals. Disadvantage of RS-232 is that, you need to purchase an RS-422 port or converter. Release 99is the first version of UMTS. Data rate of fast moving users is up to 144 kbps. 	06
Q.2	A)	Write a note on flex ray protocol.	04
	B)	Explain the addressing mechanism of IEEE 802.11.	05
	C)	What is HLR and it's functioning in GSM?	05
Q.3	A)	Draw various frame formats of GSM protocol and explain them in detail.	10
	B)	Give brief explanation over iGSM.	04
Q.4	A)	With suitable diagram explain network architecture of GPRS.	10
	B)	What is GPRS detach procedure? List two modes of the same.	04
Q.5	A)	How is data transferred to external PDN through GPRS network?	10
	B)	Draw and explain Bluetooth architecture.	04
Q.6	A)	Discuss following terms related to UMTS: 1. Node-B 2. RNC	10 07
Q.7	B)	List various advantages of IMT – 2000.	04
	A)	Explain in detail three categories of ad-hoc routing protocol.	10
	B)	Discuss sequence number and damping in DSDV.	04